If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9600+r^2+40r=0
a = 1; b = 40; c = -9600;
Δ = b2-4ac
Δ = 402-4·1·(-9600)
Δ = 40000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40000}=200$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-200}{2*1}=\frac{-240}{2} =-120 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+200}{2*1}=\frac{160}{2} =80 $
| 2(1-5x)=2x+38 | | 92+123+(x)=360 | | 2(y-5)=19 | | 93+123+(x)=360 | | m=(37-13)/8 | | 6z−5z=19 | | 3x-9=12x+31 | | 2x=(541x*511) | | X+(x+6)=130 | | 7x+-22=-70 | | 3x+11+1x+2x-8=180 | | -10(x+10)=-130 | | 3(x−5)=9 | | 2x+4+3x-8+x-2=54 | | 5(x)+77+(x)-11+7(x)+73=360 | | 17/4x=5 | | 10s−8s=6 | | 2x^2+4x+4=3 | | -16x^2+64x+10=0 | | 15v−7v=16 | | 0=-q^2-60q+4000 | | 4x+5+x+160=180 | | 14j+-20j+-11=-5 | | 15x-(9x-2)=8 | | 5k−3k+2=14 | | 16d=4 | | -20k+10k=20 | | 2c+5c=7 | | 6m+2m=16 | | 3x^2-x-8=-8 | | .25x=5.32 | | 3x+5+61+39=180 |